login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A349302 G.f. A(x) satisfies: A(x) = 1 / ((1 + x) * (1 - x * A(x)^6)). 6
1, 0, 1, 6, 43, 321, 2500, 20096, 165621, 1392397, 11896823, 103014141, 902035660, 7974080834, 71070247438, 637937825112, 5761970031357, 52329993278856, 477588786637264, 4377832437503643, 40288077072190109, 372086539388626537, 3447632819399550915 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..500

FORMULA

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n+5*k,6*k) * binomial(7*k,k) / (6*k+1).

a(n) ~ sqrt(1 - 5*r) / (2 * 7^(2/3) * sqrt(3*Pi*(1+r)) * n^(3/2) * r^(n + 1/6)), where r = 0.1008057775745727124639860500770912830001828593281202101426766... is the root of the equation 7^7 * r = 6^6 * (1+r)^6. - Vaclav Kotesovec, Nov 14 2021

MATHEMATICA

nmax = 22; A[_] = 0; Do[A[x_] = 1/((1 + x) (1 - x A[x]^6)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Table[Sum[(-1)^(n - k) Binomial[n + 5 k, 6 k] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 22}]

CROSSREFS

Cf. A002296, A005043, A346627, A346667, A349292, A349299, A349300, A349301, A349303.

Sequence in context: A015552 A091129 A091128 * A025594 A098665 A153397

Adjacent sequences:  A349299 A349300 A349301 * A349303 A349304 A349305

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Nov 13 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 02:00 EDT 2022. Contains 354122 sequences. (Running on oeis4.)