OFFSET
0,3
FORMULA
EXAMPLE
G.f.: A(x) = F(x*G(x)^4) = 1 + x + 6*x^2 + 43*x^3 + 334*x^4 +...
F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 +...
G(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 969*x^4 + 7084*x^5 +...
A(x)^2 = 1 + 2*x + 13*x^2 + 98*x^3 + 790*x^4 + 6618*x^5 +...
G(x)^4*A(x)^2 = 1 + 6*x + 43*x^2 + 334*x^3 + 2717*x^4 + 22776*x^5 +...
PROG
(PARI) {a(n)=if(n==0, 1, sum(k=0, n, binomial(2*k+1, k)/(2*k+1)*binomial(4*(n-k)+4*k, n-k)*4*k/(4*(n-k)+4*k)))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 15 2009
STATUS
approved