login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153397
G.f.: A(x) = F(x*G(x)^4) = F(G(x)-1) where F(x) = G(x/F(x)^2) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan) and G(x) = F(x*G(x)^2) = 1 + x*G(x)^4 is the g.f. of A002293.
2
1, 1, 6, 43, 334, 2717, 22776, 195000, 1695874, 14927990, 132673398, 1188412986, 10714602196, 97133633788, 884716464592, 8091061578807, 74259516900390, 683694381314696, 6312247839166260, 58424001667319720, 541971167468786770
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} C(2k+1,k)/(2k+1) * C(4n,n-k)*k/n for n>0 with a(0)=1.
G.f. satisfies: A(x) = 1 + x*G(x)^4*A(x)^2 where G(x) is the g.f. of A002293.
G.f. satisfies: A(x/F(x)^2) = F(F(x)-1) where F(x) is the g.f. of A000108.
G.f. satisfies: A(x/H(x)) = F(H(x)-1) where H(x) = 1 + x*H(x)^3 is the g.f. of A001764 and F(x) is the g.f. of A000108.
EXAMPLE
G.f.: A(x) = F(x*G(x)^4) = 1 + x + 6*x^2 + 43*x^3 + 334*x^4 +...
F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 +...
G(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 969*x^4 + 7084*x^5 +...
A(x)^2 = 1 + 2*x + 13*x^2 + 98*x^3 + 790*x^4 + 6618*x^5 +...
G(x)^4*A(x)^2 = 1 + 6*x + 43*x^2 + 334*x^3 + 2717*x^4 + 22776*x^5 +...
PROG
(PARI) {a(n)=if(n==0, 1, sum(k=0, n, binomial(2*k+1, k)/(2*k+1)*binomial(4*(n-k)+4*k, n-k)*4*k/(4*(n-k)+4*k)))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 15 2009
STATUS
approved