OFFSET
0,4
COMMENTS
In general, for k>=1, Sum_{j=0..n} (-1)^(n-k) * binomial(n + (k-1)*j,k*j) * binomial((k+1)*j,j) / (k*j+1) ~ sqrt(1 - (k-1)*r) / (sqrt(2*k*(k+1)*(1+r)*Pi) * (k+1)^(1/k) * n^(3/2) * r^(n + 1/k)), where r is the smallest real root of the equation (k+1)^(k+1) * r = k^k * (1+r)^k. - Vaclav Kotesovec, Nov 14 2021
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..500
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n+6*k,7*k) * binomial(8*k,k) / (7*k+1).
a(n) ~ sqrt(1 - 6*r) / (2^(17/7) * sqrt(7*Pi*(1+r)) * n^(3/2) * r^(n + 1/7)), where r = 0.08937121041965233233945479666512758370169477786851479485467... is the real root of the equation 8^8 * r = 7^7 * (1+r)^7. - Vaclav Kotesovec, Nov 14 2021
From Peter Bala, Jun 02 2024: (Start)
A(x) = 1/(1 + x)*F(x/(1 + x)^7), where F(x) = Sum_{n >= 0} A007556(n)*x^n.
A(x) = 1/(1 + x) + x*A(x)^8. (End)
MATHEMATICA
nmax = 21; A[_] = 0; Do[A[x_] = 1/((1 + x) (1 - x A[x]^7)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[(-1)^(n - k) Binomial[n + 6 k, 7 k] Binomial[8 k, k]/(7 k + 1), {k, 0, n}], {n, 0, 21}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Nov 13 2021
STATUS
approved