login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268316
a(n) is the number of Dyck paths of length 4n and height n.
4
1, 1, 7, 57, 484, 4199, 36938, 328185, 2937932, 26457508, 239414383, 2175127695, 19827974412, 181266501290, 1661241473220, 15257624681145, 140400178555644, 1294141164447692, 11946771748196428, 110435320379615620, 1022108852175416720, 9470416604629933935
OFFSET
0,3
COMMENTS
Equivalently, a(n) is the number of rooted plane trees with 2n+1 nodes and height n.
LINKS
Gheorghe Coserea, Solutions for n=3.
Gheorghe Coserea, Solutions for n=4.
FORMULA
a(n) = T(2n,n), where T(n,k) is defined by A080936.
a(n) = binomial(4*n,n) * 2*(2*n+3)*(2*n^2+1)/((3*n+1)*(3*n+2)*(3*n+3)).
a(n) ~ K * A268315^n / sqrt(n), where K = 8/27 * sqrt(2/(3*Pi)) = 0.13649151584...
G.f.: -((3F2(-3/4, -1/2, -1/4; 1/3, 2/3; 256*x/27)-1)/(4*x)) + 4/5*x*3F2(5/4, 3/2, 7/4; 7/3, 8/3; 256*x/27) + 8/3*x^2*3F2(9/4, 5/2, 11/4; 10/3, 11/3; 256*x/27). - Benedict W. J. Irwin, Aug 09 2016
Recurrence: 3*(n+1)*(2*n + 1)*(3*n + 1)*(3*n + 2)*(2*n^2 - 4*n + 3)*a(n) = 8*(2*n - 1)*(2*n + 3)*(4*n - 3)*(4*n - 1)*(2*n^2 + 1)*a(n-1). - Vaclav Kotesovec, Aug 10 2016
EXAMPLE
For n = 2 the a(2) = 7 solutions are
/\/\/\ |
LLRLRLRR / \ /|\
................................
/\ /|\
LRLLRRLR /\/ \/\ |
................................
/\ /\ /\
LLRRLLRR / \/ \ / \
................................
/\ /|\
LLRRLRLR / \/\/\ /
................................
/\ /|\
LRLRLLRR /\/\/ \ \
................................
/\/\ /\
LLRLRRLR / \/\ /\
................................
/\/\ /\
LRLLRLRR /\/ \ /\
MATHEMATICA
Table[Binomial[4 n, n] 2 (2 n + 3) (2 n^2 + 1) / ((3 n + 1) (3 n + 2) (3 n + 3)), {n, 1, 25}] (* Vincenzo Librandi, Feb 04 2016 *)
Drop[CoefficientList[Series[-((-1 + HypergeometricPFQ[{-3/4, -1/2, -1/4}, {1/3, 2/3}, 256 x/27])/(4x)) + 4/5 x HypergeometricPFQ[{5/4, 3/2, 7/4}, {7/3, 8/3}, 256 x/27] + 8/3 x^2 HypergeometricPFQ[{9/4, 5/2, 11/4}, {10/3, 11/3}, 256x/27], {x, 0, 20}], x], 1] (* Benedict W. J. Irwin, Aug 09 2016 *)
PROG
(PARI)
a(n) = binomial(4*n, n) * 2*(2*n+3)*(2*n^2+1)/((3*n+1)*(3*n+2)*(3*n+3));
vector(21, i, a(i))
(Magma) [Binomial(4*n, n)*2*(2*n+3)*(2*n^2+1)/((3*n+1)*(3*n+2)*(3*n+3)): n in [1..30]]; // Vincenzo Librandi, Feb 04 2016
CROSSREFS
Column k=2 of A289481.
Sequence in context: A014990 A015565 A349303 * A291537 A082413 A142990
KEYWORD
nonn,walk
AUTHOR
Gheorghe Coserea, Feb 01 2016
EXTENSIONS
Added a(0)=1, adjusted b-file - N. J. A. Sloane, Dec 22 2016
STATUS
approved