login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A289481 Number A(n,k) of Dyck paths of semilength k*n and height n; square array A(n,k), n>=0, k>=0, read by antidiagonals. 12
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 7, 1, 0, 1, 1, 31, 57, 1, 0, 1, 1, 127, 1341, 484, 1, 0, 1, 1, 511, 26609, 59917, 4199, 1, 0, 1, 1, 2047, 497845, 5828185, 2665884, 36938, 1, 0, 1, 1, 8191, 9096393, 517884748, 1244027317, 117939506, 328185, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,13

COMMENTS

For fixed k > 1, A(n,k) ~ 2^(2*k*n + 3) * k^(2*k*n + 1/2) / ((k-1)^((k-1)*n + 1/2) * (k+1)^((k+1)*n + 7/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Jul 14 2017

LINKS

Alois P. Heinz, Antidiagonals n = 0..80, flattened

EXAMPLE

Square array A(n,k) begins:

  1, 1,    1,       1,          1,            1, ...

  0, 1,    1,       1,          1,            1, ...

  0, 1,    7,      31,        127,          511, ...

  0, 1,   57,    1341,      26609,       497845, ...

  0, 1,  484,   59917,    5828185,    517884748, ...

  0, 1, 4199, 2665884, 1244027317, 517500496981, ...

MAPLE

b:= proc(x, y, k) option remember;

      `if`(x=0, 1, `if`(y>0, b(x-1, y-1, k), 0)+

      `if`(y <  min(x-1, k), b(x-1, y+1, k), 0))

    end:

A:= (n, k)-> `if`(n=0, 1, b(2*n*k, 0, n)-b(2*n*k, 0, n-1)):

seq(seq(A(n, d-n), n=0..d), d=0..12);

MATHEMATICA

b[x_, y_, k_]:=b[x, y, k]=If[x==0, 1, If[y>0, b[x - 1, y - 1, k], 0] + If[y<Min[x - 1, k], b[x - 1, y + 1, k], 0]]; A[n_, k_]:=A[n, k]=If[n==0, 1, b[2n*k, 0, n] - b[2n*k, 0, n - 1]]; Table[A[n, d - n], {d, 0, 12}, {n, 0, d}]//Flatten (* Indranil Ghosh, Jul 07 2017, after Maple code *)

CROSSREFS

Columns k=0..10 give: A000007, A000012, A268316, A289473, A289474, A289475, A289476, A289477, A289478, A289479, A289480.

Rows n=0-2 give: A000012, A057427, A083420(k+1).

Main diagonal gives A289482.

Cf. A080936.

Sequence in context: A226371 A298937 A223855 * A229819 A194655 A197037

Adjacent sequences:  A289478 A289479 A289480 * A289482 A289483 A289484

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jul 06 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 13:50 EST 2019. Contains 329877 sequences. (Running on oeis4.)