login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268318
Irregular triangle read by rows: T(n,k) gives the row sums in the table Fib(n+1) X Fib(n), where k = 1..Fib(n+1), and 1's are assigned to cells on the longest diagonal path.
1
0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2
OFFSET
0,6
COMMENTS
Inspired by sun flower spirals which come in Fib(i) and Fib(i+1) numbers in opposite directions. The present Fib(n+1) X Fib(n) table has the following properties:
(i) Columns sum create the irregular triangle A268317.
(ii) Rows sum create the present irregular triangle.
(iii) The row sums of each of these irregular triangles is conjectured to be A000071.
(iv) The first differences of the sequence of half of the voids (0's) are conjectured to give A191797.
See illustrations in the links of A268317.
EXAMPLE
Irregular triangle begins:
0
1
1 1
1 2 1
1 2 1 2 1
1 2 1 2 2 1 2 1
1 2 1 2 2 1 2 1 2 2 1 2 1
1 2 1 2 2 1 2 1 2 2 1 2 2 1 2 1 2 2 1 2 1
...
PROG
(Small Basic)
TextWindow.Write("0, 1, 1, 1, 1, 2, 1, ")
t[3][1] = 1
t[3][2] = 2
t[3][3] = 1
k[2] = 2
k[3] = 3
For n = 4 To 12
k[n] = k[n-1] + k[n-2]
c = math.Ceiling(k[n]/2)
i1 = 1
For j = 1 To k[n]
If Math.Remainder(k[n], 2)<>0 Then
If j > c then
t[n][j] = t[n][j-2*i1]
i1 = i1 + 1
Else
t[n][j] = t[n-1][j]
EndIf
Else
If j <= c then
t[n][j] = t[n-1][j]
Else
if j = c+1 Then
t[n][j] = t[n][j-1]
else
t[n][j] = t[n][j-(2*i1+1)]
i1 = i1 + 1
endif
EndIf
EndIf
TextWindow.Write(t[n][j]+", ")
EndFor
EndFor
CROSSREFS
KEYWORD
nonn,base,tabf
AUTHOR
Kival Ngaokrajang, Feb 01 2016
STATUS
approved