login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349301
G.f. A(x) satisfies: A(x) = 1 / ((1 + x) * (1 - x * A(x)^5)).
6
1, 0, 1, 5, 31, 200, 1351, 9430, 67531, 493505, 3665981, 27602081, 210179437, 1615820402, 12524590873, 97775503808, 768083233899, 6067097140799, 48159634951855, 383965003803985, 3073379977522321, 24688458872260007, 198968304164411309
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n+4*k,5*k) * binomial(6*k,k) / (5*k+1).
a(n) ~ sqrt(1 - 4*r) / (2^(6/5) * 3^(7/10) * sqrt(5*Pi*(1+r)) * n^(3/2) * r^(n + 1/5)), where r = 0.11589193448796656683553561932282471511616945026903125324... is the real root of the equation 6^6 * r = 5^5 * (1+r)^5. - Vaclav Kotesovec, Nov 14 2021
From Peter Bala, Jun 02 2024: (Start)
A(x) = 1/(1 + x)*F(x/(1 + x)^5), where F(x) = Sum_{n >= 0} A002295(n)*x^n.
A(x) = 1/(1 + x) + x*A(x)^6. (End)
MATHEMATICA
nmax = 22; A[_] = 0; Do[A[x_] = 1/((1 + x) (1 - x A[x]^5)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[(-1)^(n - k) Binomial[n + 4 k, 5 k] Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 22}]
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Nov 13 2021
STATUS
approved