login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349143
a(n) = Sum_{d|n} A038040(d) * A348507(n/d), where A038040(n) = n*tau(n), A348507(n) = A003959(n) - n, and A003959 is fully multiplicative with a(p) = (p+1).
7
0, 1, 1, 9, 1, 16, 1, 51, 13, 22, 1, 114, 1, 28, 25, 233, 1, 145, 1, 168, 31, 40, 1, 590, 21, 46, 106, 222, 1, 310, 1, 939, 43, 58, 37, 915, 1, 64, 49, 896, 1, 406, 1, 330, 262, 76, 1, 2570, 29, 297, 61, 384, 1, 1012, 49, 1202, 67, 94, 1, 2040, 1, 100, 340, 3489, 55, 598, 1, 492, 79, 574, 1, 4457, 1, 118, 360, 546, 55
OFFSET
1,4
COMMENTS
Dirichlet convolution of A348507 with A038040, which is the Dirichlet convolution of the identity function (A000027) with itself.
Dirichlet convolution of the identity function (A000027) with A349140.
Dirichlet convolution of sigma (A000203) with A349141.
Dirichlet convolution of A060640 with A348971.
LINKS
FORMULA
a(n) = Sum_{d|n} A038040(n/d) * A348507(d).
a(n) = Sum_{d|n} d * A349140(n/d).
a(n) = Sum_{d|n} A000203(d) * A349141(n/d).
a(n) = Sum_{d|n} A060640(d) * A348971(n/d).
For all n >= 1, a(n) >= A349123(n) >= A348983(n).
MATHEMATICA
f[p_, e_] := (p + 1)^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, #*DivisorSigma[0, #]*(s[n/#] - n/#) &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
PROG
(PARI)
A038040(n) = (n*numdiv(n));
A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
A348507(n) = (A003959(n) - n);
A349143(n) = sumdiv(n, d, A038040(d)*A348507(n/d));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 08 2021
STATUS
approved