login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A348986 Denominator of ratio sigma(n) / A325973(n), where A325973 is the arithmetic mean of {sum of squarefree divisors} and {sum of unitary divisors}. 3
1, 1, 1, 4, 1, 1, 1, 2, 7, 1, 1, 4, 1, 1, 1, 10, 1, 7, 1, 4, 1, 1, 1, 2, 16, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 31, 1, 1, 1, 2, 1, 1, 1, 4, 7, 1, 1, 10, 29, 16, 1, 4, 1, 2, 1, 2, 1, 1, 1, 4, 1, 1, 7, 34, 1, 1, 1, 4, 1, 1, 1, 17, 1, 1, 16, 4, 1, 1, 1, 10, 43, 1, 1, 4, 1, 1, 1, 2, 1, 7, 1, 4, 1, 1, 1, 2, 1, 29, 7, 74, 1, 1, 1, 2, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
This is not multiplicative: a(4) = 4 and a(9) = 7, but a(36) = 31, not 28.
LINKS
FORMULA
a(n) = A325973(n) / A348984(n) = A325973(n) / gcd(A000203(n), A325973(n)).
MATHEMATICA
f1[p_, e_] := p + 1; f2[p_, e_] := p^e + 1; s[1] = 1; s[n_] := (Times @@ f1 @@@ (f = FactorInteger[n]) + Times @@ f2 @@@ f)/2; a[n_] := Denominator[DivisorSigma[1, n]/s[n]]; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
PROG
(PARI)
A325973(n) = (1/2)*sumdiv(n, d, d*(issquarefree(d) + (1==gcd(d, n/d))));
A348986(n) = { my(am=A325973(n)); (am/gcd(sigma(n), am)); };
CROSSREFS
Cf. also A348947.
Sequence in context: A132157 A103163 A128211 * A199393 A010327 A134835
KEYWORD
nonn,frac
AUTHOR
Antti Karttunen, Nov 06 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 14 17:09 EDT 2024. Contains 371666 sequences. (Running on oeis4.)