login
A348947
a(n) = A348944(n) / gcd(sigma(n), A348944(n)), where A348944 is the arithmetic mean of A003959 and A034448, and sigma is the sum of divisors function.
4
1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 49, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 23, 1, 1, 1, 1, 46, 1, 1, 1, 97, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 49, 1, 1, 1, 1, 1, 23, 1, 6, 1, 1, 1, 1, 1, 1, 1, 397, 1, 1, 1, 1, 1, 1, 1, 87, 1, 1, 1, 1, 1, 1, 1, 49, 169, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 46, 1, 1, 1, 227
OFFSET
1,8
COMMENTS
Numerator of ratio A348944(n) / A000203(n).
This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 36 = 2^2 * 3^2, where a(36) = 97 <> 1 = a(4)*a(9).
FORMULA
a(n) = A348944(n) / A348946(n) = A348944(n) / gcd(A000203(n), A348944(n)).
MATHEMATICA
f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := (p + 1)^e; f3[p_, e_] := p^e + 1; a[1] = 1; a[n_] := (s = (Times @@ f2 @@@ (f = FactorInteger[n]) + Times @@ f3 @@@ f) / 2) / GCD[Times @@ f1 @@@ f, s]; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
PROG
(PARI)
A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
A348944(n) = ((1/2)*(A003959(n)+A034448(n)));
A348947(n) = { my(u=A348944(n)); (u/gcd(sigma(n), u)); };
CROSSREFS
Sequence in context: A257936 A348039 A143532 * A267426 A202917 A324396
KEYWORD
nonn,frac
AUTHOR
Antti Karttunen, Nov 05 2021
STATUS
approved