login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A348944(n) / gcd(sigma(n), A348944(n)), where A348944 is the arithmetic mean of A003959 and A034448, and sigma is the sum of divisors function.
4

%I #10 Feb 11 2022 11:23:53

%S 1,1,1,1,1,1,1,6,1,1,1,1,1,1,1,49,1,1,1,1,1,1,1,6,1,1,23,1,1,1,1,46,1,

%T 1,1,97,1,1,1,6,1,1,1,1,1,1,1,49,1,1,1,1,1,23,1,6,1,1,1,1,1,1,1,397,1,

%U 1,1,1,1,1,1,87,1,1,1,1,1,1,1,49,169,1,1,1,1,1,1,6,1,1,1,1,1,1,1,46,1,1,1,227

%N a(n) = A348944(n) / gcd(sigma(n), A348944(n)), where A348944 is the arithmetic mean of A003959 and A034448, and sigma is the sum of divisors function.

%C Numerator of ratio A348944(n) / A000203(n).

%C This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 36 = 2^2 * 3^2, where a(36) = 97 <> 1 = a(4)*a(9).

%H Antti Karttunen, <a href="/A348947/b348947.txt">Table of n, a(n) for n = 1..65537</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = A348944(n) / A348946(n) = A348944(n) / gcd(A000203(n), A348944(n)).

%t f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := (p + 1)^e; f3[p_, e_] := p^e + 1; a[1] = 1; a[n_] := (s = (Times @@ f2 @@@ (f = FactorInteger[n]) + Times @@ f3 @@@ f) / 2) / GCD[Times @@ f1 @@@ f, s]; Array[a, 100] (* _Amiram Eldar_, Nov 05 2021 *)

%o (PARI)

%o A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };

%o A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };

%o A348944(n) = ((1/2)*(A003959(n)+A034448(n)));

%o A348947(n) = { my(u=A348944(n)); (u/gcd(sigma(n),u)); };

%Y Cf. A000203, A003959, A034448, A348944, A348945, A348946, A348948 (denominators).

%K nonn,frac

%O 1,8

%A _Antti Karttunen_, Nov 05 2021