login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A348705
a(n) is the total length of all line segments in the symmetric representation of sigma(n).
6
4, 8, 12, 16, 18, 24, 24, 32, 34, 40, 36, 48, 42, 54, 56, 64, 54, 72, 60, 80, 78, 82, 72, 96, 84, 96, 98, 112, 90, 120, 96, 128
OFFSET
1,1
COMMENTS
a(n) is also the number of toothpicks of length 1 needed to represent the symmetric representation of sigma(n) (see the examples).
The diagram is symmetric thus all terms are even.
If the symmetric representation of sigma(n) has only one part (cf. A174973) or if it has two parts and they meet at the center of the Dyck path (cf. A262259) then a(n) = 4*n, otherwise a(n) < 4*n. In other words: if n is a term of A279029 then a(n) = 4*n, otherwise a(n) < 4*n.
FORMULA
a(n) = 2*A348854(n).
a(n) = A008586(n) - A279228(n). - Omar E. Pol, Dec 13 2021
EXAMPLE
Illustration of initial terms:
. _ _ _ _
. _ _ _ |_ _ _ |_
. _ _ _ |_ _ _| | |_
. _ _ |_ _ |_ |_ _ |_ _ |
. _ _ |_ _|_ |_ | | | | |
. _ |_ | | | | | | | | |
. |_| |_| |_| |_| |_| |_|
.
n: 1 2 3 4 5 6
a(n): 4 8 12 16 18 24
.
. _ _ _ _ _
. _ _ _ _ _ |_ _ _ _ _|
. _ _ _ _ |_ _ _ _ | |_ _
. |_ _ _ _| | |_ |_ |
. |_ |_ |_ _ |_|_ _
. |_ _ |_ _ | | |
. | | | | | |
. | | | | | |
. | | | | | |
. |_| |_| |_|
.
n: 7 8 9
a(n): 24 32 34
.
Another way for the illustration of initial terms is as follows:
--------------------------------------------------------------------------
. n a(n) Diagram
--------------------------------------------------------------------------
_
1 4 |_| _
_| | _
2 8 |_ _| | | _
_ _|_| | | _
3 12 |_ _| _| | | | _
_ _| _| | | | | _
4 16 |_ _ _| _|_| | | | | _
_ _ _| _ _| | | | | | _
5 18 |_ _ _| | _| | | | | | | _
_ _ _| _| _|_| | | | | | | _
6 24 |_ _ _ _| _| _ _| | | | | | | | _
_ _ _ _| _| _ _| | | | | | | | | _
7 24 |_ _ _ _| | _| _ _|_| | | | | | | | | _
_ _ _ _| | _| | _ _| | | | | | | | | | _
8 32 |_ _ _ _ _| |_ _| | _ _| | | | | | | | | | | _
_ _ _ _ _| _ _|_| _ _|_| | | | | | | | | | |
9 34 |_ _ _ _ _| | _| _| _ _ _| | | | | | | | | |
_ _ _ _ _| | _| _| _ _| | | | | | | | |
10 40 |_ _ _ _ _ _| | _| | _ _|_| | | | | | |
_ _ _ _ _ _| | _| | _ _ _| | | | | |
11 36 |_ _ _ _ _ _| | _ _| _| | _ _ _| | | | |
_ _ _ _ _ _| | _ _| _|_| _ _ _|_| | |
12 48 |_ _ _ _ _ _ _| | _ _| _ _| | _ _ _| |
_ _ _ _ _ _ _| | _| | _| | _ _ _|
13 42 |_ _ _ _ _ _ _| | | _| _| _| |
_ _ _ _ _ _ _| | |_ _| _| _|
14 54 |_ _ _ _ _ _ _ _| | _ _| _|
_ _ _ _ _ _ _ _| | _ _|
15 56 |_ _ _ _ _ _ _ _| | |
_ _ _ _ _ _ _ _| |
16 64 |_ _ _ _ _ _ _ _ _|
...
CROSSREFS
Cf. A008586 (upper bounds).
Cf. A237271 (number of parts or regions).
Cf. A340833 (number of vertices).
Cf. A340846 (number of edges).
Cf. A239931-A239934 (illustration of first 32 diagrams).
Sequence in context: A068306 A378040 A311118 * A272405 A311119 A321177
KEYWORD
nonn,more
AUTHOR
Omar E. Pol, Oct 30 2021
STATUS
approved