OFFSET
1,1
COMMENTS
a(n) is also the number of toothpicks of length 1 needed to represent the symmetric representation of sigma(n) (see the examples).
The diagram is symmetric thus all terms are even.
FORMULA
a(n) = 2*A348854(n).
EXAMPLE
Illustration of initial terms:
. _ _ _ _
. _ _ _ |_ _ _ |_
. _ _ _ |_ _ _| | |_
. _ _ |_ _ |_ |_ _ |_ _ |
. _ _ |_ _|_ |_ | | | | |
. _ |_ | | | | | | | | |
. |_| |_| |_| |_| |_| |_|
.
n: 1 2 3 4 5 6
a(n): 4 8 12 16 18 24
.
. _ _ _ _ _
. _ _ _ _ _ |_ _ _ _ _|
. _ _ _ _ |_ _ _ _ | |_ _
. |_ _ _ _| | |_ |_ |
. |_ |_ |_ _ |_|_ _
. |_ _ |_ _ | | |
. | | | | | |
. | | | | | |
. | | | | | |
. |_| |_| |_|
.
n: 7 8 9
a(n): 24 32 34
.
Another way for the illustration of initial terms is as follows:
--------------------------------------------------------------------------
. n a(n) Diagram
--------------------------------------------------------------------------
_
1 4 |_| _
_| | _
2 8 |_ _| | | _
_ _|_| | | _
3 12 |_ _| _| | | | _
_ _| _| | | | | _
4 16 |_ _ _| _|_| | | | | _
_ _ _| _ _| | | | | | _
5 18 |_ _ _| | _| | | | | | | _
_ _ _| _| _|_| | | | | | | _
6 24 |_ _ _ _| _| _ _| | | | | | | | _
_ _ _ _| _| _ _| | | | | | | | | _
7 24 |_ _ _ _| | _| _ _|_| | | | | | | | | _
_ _ _ _| | _| | _ _| | | | | | | | | | _
8 32 |_ _ _ _ _| |_ _| | _ _| | | | | | | | | | | _
_ _ _ _ _| _ _|_| _ _|_| | | | | | | | | | |
9 34 |_ _ _ _ _| | _| _| _ _ _| | | | | | | | | |
_ _ _ _ _| | _| _| _ _| | | | | | | | |
10 40 |_ _ _ _ _ _| | _| | _ _|_| | | | | | |
_ _ _ _ _ _| | _| | _ _ _| | | | | |
11 36 |_ _ _ _ _ _| | _ _| _| | _ _ _| | | | |
_ _ _ _ _ _| | _ _| _|_| _ _ _|_| | |
12 48 |_ _ _ _ _ _ _| | _ _| _ _| | _ _ _| |
_ _ _ _ _ _ _| | _| | _| | _ _ _|
13 42 |_ _ _ _ _ _ _| | | _| _| _| |
_ _ _ _ _ _ _| | |_ _| _| _|
14 54 |_ _ _ _ _ _ _ _| | _ _| _|
_ _ _ _ _ _ _ _| | _ _|
15 56 |_ _ _ _ _ _ _ _| | |
_ _ _ _ _ _ _ _| |
16 64 |_ _ _ _ _ _ _ _ _|
...
CROSSREFS
Cf. A008586 (upper bounds).
Cf. A237271 (number of parts or regions).
Cf. A340833 (number of vertices).
Cf. A340846 (number of edges).
KEYWORD
nonn,more
AUTHOR
Omar E. Pol, Oct 30 2021
STATUS
approved