login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348647
Irregular table read by rows; the n-th row contains the lengths of the runs of consecutive terms with the same parity in the n-th row of Pascal's triangle (A007318).
1
1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 7, 1, 2, 6, 2, 1, 1, 1, 5, 1, 1, 1, 4, 4, 4, 1, 3, 1, 3, 1, 3, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 15, 1, 2, 14, 2, 1, 1, 1, 13, 1, 1, 1, 4, 12, 4, 1, 3, 1, 11, 1, 3, 1
OFFSET
0,2
COMMENTS
For any n >= 0, the n-th row:
- is palindromic,
- has A038573(n+1) terms,
- has leading term A006519(n+1),
- has central term A080079(n+1).
FORMULA
Sum_{k = 1..A038573(n+1)} T(n, k) = n+1.
T(n, 1) = A006519(n+1).
T(n, A048896(n)) = A080079(n+1).
T(2^k-1, 1) = 2^k for any k >= 0.
EXAMPLE
Triangle begins:
1;
2;
1, 1, 1;
4;
1, 3, 1;
2, 2, 2;
1, 1, 1, 1, 1, 1, 1;
8;
1, 7, 1;
2, 6, 2;
1, 1, 1, 5, 1, 1, 1;
4, 4, 4;
1, 3, 1, 3, 1, 3, 1;
2, 2, 2, 2, 2, 2, 2;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
16;
...
PROG
(PARI) row(n) = { my (b=binomial(n)%2, r=[], p=1, w=1); for (k=2, #b, if (p==b[k], w++, r=concat(r, w); p=b[k]; w=1)); concat(r, w) }
CROSSREFS
KEYWORD
nonn,look,tabf
AUTHOR
Rémy Sigrist, Oct 27 2021
STATUS
approved