Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Oct 27 2021 15:26:08
%S 1,2,1,1,1,4,1,3,1,2,2,2,1,1,1,1,1,1,1,8,1,7,1,2,6,2,1,1,1,5,1,1,1,4,
%T 4,4,1,3,1,3,1,3,1,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,16,1,
%U 15,1,2,14,2,1,1,1,13,1,1,1,4,12,4,1,3,1,11,1,3,1
%N Irregular table read by rows; the n-th row contains the lengths of the runs of consecutive terms with the same parity in the n-th row of Pascal's triangle (A007318).
%C For any n >= 0, the n-th row:
%C - is palindromic,
%C - has A038573(n+1) terms,
%C - has leading term A006519(n+1),
%C - has central term A080079(n+1).
%H Rémy Sigrist, <a href="/A348647/b348647.txt">Table of n, a(n) for n = 0..6304</a> (rows for n = 0..254, flattened)
%H <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>
%F Sum_{k = 1..A038573(n+1)} T(n, k) = n+1.
%F T(n, 1) = A006519(n+1).
%F T(n, A048896(n)) = A080079(n+1).
%F T(2^k-1, 1) = 2^k for any k >= 0.
%e Triangle begins:
%e 1;
%e 2;
%e 1, 1, 1;
%e 4;
%e 1, 3, 1;
%e 2, 2, 2;
%e 1, 1, 1, 1, 1, 1, 1;
%e 8;
%e 1, 7, 1;
%e 2, 6, 2;
%e 1, 1, 1, 5, 1, 1, 1;
%e 4, 4, 4;
%e 1, 3, 1, 3, 1, 3, 1;
%e 2, 2, 2, 2, 2, 2, 2;
%e 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
%e 16;
%e ...
%o (PARI) row(n) = { my (b=binomial(n)%2, r=[], p=1, w=1); for (k=2, #b, if (p==b[k], w++, r=concat(r, w); p=b[k]; w=1)); concat(r, w) }
%Y Cf. A006519, A007318, A038573, A047999, A048896, A080079.
%K nonn,look,tabf
%O 0,2
%A _Rémy Sigrist_, Oct 27 2021