login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348529
Number of compositions (ordered partitions) of n into two or more triangular numbers.
2
0, 0, 1, 1, 3, 4, 6, 11, 16, 25, 39, 61, 94, 147, 227, 350, 546, 846, 1309, 2030, 3147, 4875, 7558, 11715, 18154, 28136, 43609, 67586, 104747, 162346, 251610, 389958, 604381, 936699, 1451743, 2249991, 3487152, 5404570, 8376292, 12982016, 20120202, 31183350, 48329596, 74903735
OFFSET
0,5
FORMULA
a(n) = A023361(n) - A010054(n). - Alois P. Heinz, Oct 21 2021
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, add(
`if`(issqr(8*j+1), b(n-j), 0), j=1..n))
end:
a:= n-> b(n)-`if`(issqr(8*n+1), 1, 0):
seq(a(n), n=0..43); # Alois P. Heinz, Oct 21 2021
MATHEMATICA
b[n_] := b[n] = If[n == 0, 1, Sum[
If[IntegerQ@ Sqrt[8*j + 1], b[n - j], 0], {j, 1, n}]];
a[n_] := b[n] - If[IntegerQ@ Sqrt[8*n + 1], 1, 0];
Table[a[n], {n, 0, 43}] (* Jean-François Alcover, Mar 01 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 21 2021
STATUS
approved