login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348527
Noninfinitary Zumkeller numbers: numbers whose set of noninfinitary divisors is nonempty and can be partitioned into two disjoint sets of equal sum.
1
48, 80, 96, 112, 150, 180, 240, 252, 294, 336, 360, 396, 432, 468, 480, 486, 504, 528, 560, 600, 612, 624, 630, 672, 684, 720, 726, 768, 792, 810, 816, 828, 864, 880, 912, 936, 960, 1008, 1014, 1040, 1044, 1050, 1056, 1104, 1116, 1120, 1134, 1176, 1200, 1232, 1248
OFFSET
1,1
COMMENTS
The smallest odd term is a(104) = 2475.
LINKS
EXAMPLE
48 is a term since its set of noninfinitary divisors, {2, 4, 6, 8, 12, 24}, can be partitioned into the two disjoint sets, {2, 6, 8, 12} and {4, 24}, whose sums are equal: 2 + 6 + 8 + 12 = 4 + 24 = 28.
MATHEMATICA
nidiv[1] = {}; nidiv[n_] := Complement[Divisors[n], Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]; nizQ[n_] := Module[{d = nidiv[n], sum, x}, sum = Plus @@ d; sum > 0 && EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]; Select[Range[1250], !IntegerQ@ Log2@ DivisorSigma[0, #] && nizQ[#] &]
CROSSREFS
Similar sequences: A083207, A290466, A335215, A335142, A335197, A335218.
Sequence in context: A261553 A335281 A335196 * A362969 A110229 A108608
KEYWORD
nonn
AUTHOR
Amiram Eldar, Oct 21 2021
STATUS
approved