|
|
A022935
|
|
a(n) = a(n-1) + c(n-1) for n >= 2, a( ) increasing, given a(1)=3, where c( ) is complement of a( ).
|
|
2
|
|
|
3, 4, 6, 11, 18, 26, 35, 45, 57, 70, 84, 99, 115, 132, 151, 171, 192, 214, 237, 261, 286, 313, 341, 370, 400, 431, 463, 496, 530, 566, 603, 641, 680, 720, 761, 803, 846, 890, 936, 983, 1031, 1080, 1130, 1181, 1233, 1286, 1340, 1395, 1451, 1509
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Complement means that c(i) is the i-th member of the sorted list of integers >=1 that are not in the set {a(1),...,a(i-1)}. - R. J. Mathar, Aug 06 2015
|
|
LINKS
|
|
|
MATHEMATICA
|
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[1] = 3; c[1] = 1; c[2] = 2;
a[n_] := a[n] = a[n - 1] + c[n - 1];
c[n_] := c[n] = mex[Flatten[Table[{a[i], c[i]}, {i, 1, n - 1}]]];
Table[c[n], {n, 80}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|