login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of compositions (ordered partitions) of n into two or more triangular numbers.
2

%I #10 Mar 01 2022 05:32:06

%S 0,0,1,1,3,4,6,11,16,25,39,61,94,147,227,350,546,846,1309,2030,3147,

%T 4875,7558,11715,18154,28136,43609,67586,104747,162346,251610,389958,

%U 604381,936699,1451743,2249991,3487152,5404570,8376292,12982016,20120202,31183350,48329596,74903735

%N Number of compositions (ordered partitions) of n into two or more triangular numbers.

%F a(n) = A023361(n) - A010054(n). - _Alois P. Heinz_, Oct 21 2021

%p b:= proc(n) option remember; `if`(n=0, 1, add(

%p `if`(issqr(8*j+1), b(n-j), 0), j=1..n))

%p end:

%p a:= n-> b(n)-`if`(issqr(8*n+1), 1, 0):

%p seq(a(n), n=0..43); # _Alois P. Heinz_, Oct 21 2021

%t b[n_] := b[n] = If[n == 0, 1, Sum[

%t If[IntegerQ@ Sqrt[8*j + 1], b[n - j], 0], {j, 1, n}]];

%t a[n_] := b[n] - If[IntegerQ@ Sqrt[8*n + 1], 1, 0];

%t Table[a[n], {n, 0, 43}] (* _Jean-François Alcover_, Mar 01 2022, after _Alois P. Heinz_ *)

%Y Cf. A000217, A010054, A023361, A347805, A348526, A348528.

%K nonn

%O 0,5

%A _Ilya Gutkovskiy_, Oct 21 2021