login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A347837
a(n) = 32*(n + floor(n/3)) - 11; third column of A347834.
3
21, 53, 117, 149, 181, 245, 277, 309, 373, 405, 437, 501, 533, 565, 629, 661, 693, 757, 789, 821, 885, 917, 949, 1013, 1045, 1077, 1141, 1173, 1205, 1269, 1301, 1333, 1397, 1429, 1461, 1525, 1557, 1589, 1653, 1685
OFFSET
1,1
FORMULA
a(n) = A347834(n, 2) = A178415(A265667(n), 3), for n >= 1.
a(n) = ((3*A047529(n) + 1)*16 - 1)/3 = ((3*(n + floor(n/3)) - 1)*32 - 1)/3 = ((A319451(n) - 1)*32 - 1)/3, for n >= 1.
O.g.f.: G(x) = (-11 + 32*x + 32*x^2 + 75*x^3)/((1 - x)*(1 - x^3)), with a(0) = -11.
MAPLE
seq(32*(n + floor(n/3)) - 11, n=1..40); # Peter Luschny, Oct 10 2021
MATHEMATICA
A347837[n_] := 32*(n + Floor[n/3]) - 11; Array[A347837, 50] (* or *)
LinearRecurrence[{1, 0, 1, -1}, {21, 53, 117, 149}, 50] (* Paolo Xausa, Feb 27 2024 *)
PROG
(Magma) [32*(n + Floor(n/3)) - 11 : n in [1..60]]; // Wesley Ivan Hurt, Oct 10 2021
CROSSREFS
Cf. A047529 (first column), A178415, A265667, A319451, A347834, A347836 (second column).
Sequence in context: A039310 A043913 A280914 * A304517 A007796 A211460
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 07 2021
STATUS
approved