login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211460
Number of -2..2 arrays x(i) of n+1 elements i=1..n+1 with x(i)+x(j), x(i+1)+x(j+1), -(x(i)+x(j+1)), and -(x(i+1)+x(j)) having one or three distinct values for every i<=n and j<=n.
1
21, 53, 121, 259, 549, 1119, 2285, 4575, 9185, 18275, 36437, 72387, 144013, 286211, 569361, 1132703, 2254869, 4490887, 8948013, 17838815, 35573537, 70976563, 141639157, 282775411, 564615853, 1127756979, 2252749969, 4501187503
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) + 5*a(n-2) - 20*a(n-3) - 5*a(n-4) + 45*a(n-5) - 5*a(n-6) - 40*a(n-7) + 6*a(n-8) + 12*a(n-9).
Empirical g.f.: x*(21 - 10*x - 143*x^2 + 51*x^3 + 332*x^4 - 83*x^5 - 312*x^6 + 60*x^7 + 104*x^8) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 - x - x^2)*(1 - 2*x^2)*(1 - 3*x^2)). - Colin Barker, Jul 17 2018
EXAMPLE
Some solutions for n=5:
.-2....2....0....2...-1...-1....0...-2....2....2...-1....2....2....2...-1...-1
..2...-2....0....0....1....0...-2....0....0...-2....0....0...-2....0....0....0
.-2....2...-1....0....0....1....0...-2....2....0....1...-2....0....0....0...-1
..0....0....0....0....1....0...-2....0...-1....1....2....2....1...-1...-1...-2
.-2...-1....2....0...-1...-1....2...-2....2....0....1....0....0....0....0...-1
..0....0....0...-1....1....0....0....0...-1....1....2...-2...-2...-1....2...-2
CROSSREFS
Sequence in context: A347837 A304517 A007796 * A354160 A190664 A144302
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 12 2012
STATUS
approved