login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211459
Number of -2..2 arrays x(i) of n+1 elements i=1..n+1 with x(i)+x(j), x(i+1)+x(j+1), -(x(i)+x(j+1)), and -(x(i+1)+x(j)) having three distinct values for every i<=n and j<=n.
1
20, 44, 92, 178, 348, 658, 1260, 2382, 4548, 8658, 16604, 31894, 61596, 119362, 232212, 453438, 887916, 1744602, 3434636, 6780910, 13405764, 26561986, 52679004, 104653254, 208038684, 414084306, 824553428, 1643457646, 3276588012
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) + a(n-2) - 21*a(n-3) + 16*a(n-4) + 29*a(n-5) - 34*a(n-6) - 6*a(n-7) + 12*a(n-8).
Empirical g.f.: 2*x*(10 - 18*x - 52*x^2 + 93*x^3 + 74*x^4 - 132*x^5 - 25*x^6 + 46*x^7) / ((1 - x)*(1 - 2*x)*(1 - x - x^2)*(1 - 2*x^2)*(1 - 3*x^2)). - Colin Barker, Jul 17 2018
EXAMPLE
Some solutions for n=5:
.-1...-2....0....2...-1....2....2...-1...-2...-2...-2....1....0....0....1...-2
.-2....0....1....0....0...-2....1....0....0....0....0...-2....2...-1....0....0
.-1....2....2...-1....1....2....2....2....1...-2....2....1....0....1....1....1
..0....0....1....0....0...-2....1...-2....0....0...-2...-2...-2...-1....2....0
.-1....2....2....2...-1....0....0....2....1....2....2....0....0....0....1...-2
..0...-2....1....0....1....2...-2...-2....2...-2....0...-2...-2....1....2....0
CROSSREFS
Sequence in context: A039322 A043145 A043925 * A256870 A134619 A219716
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 12 2012
STATUS
approved