login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A345661
Theta series of the canonical laminated lattice LAMBDA_30.
0
1, 0, 0, 0, 200046, 294912, 23779584, 82378752, 1032132696, 3570794496, 21539288064, 64122912768, 266965225878, 683889819648, 2273486860032, 5134106886144
OFFSET
0,5
COMMENTS
Theta series is an element of the space of modular forms on Gamma_1(24) with Kronecker character -3 in modulus 24, weight 15, and dimension 60 over the integers.
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 179.
LINKS
J. H. Conway and N. J. A. Sloane, Laminated lattices, Annals of Math., 116 (1982), pp. 593-620. A revised version appears as Chapter 6 of "Sphere Packings, Lattices and Groups" by J. H. Conway and N. J. A. Sloane, Springer-Verlag, NY, 1988.
J. H. Conway and N. J. A. Sloane, The "shower" showing containments among the laminated lattices up to dimension 48 (Fig 3 from the Annals paper, also Fig. 6.1 in the Sphere packing book).
G. Nebe and N. J. A. Sloane, Home page for this lattice
EXAMPLE
1 + 200046*q^8 + 294912*q^10 + ...
PROG
(Magma)
L := Lattice("Lambda", 30);
T<q> := ThetaSeries(L, 14);
C := Coefficients(T);
[C[2*i-1] : i in [1..8]];
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Andy Huchala, Jun 29 2021
EXTENSIONS
a(11)-a(15) from Robin Visser, Sep 24 2023
STATUS
approved