login
A345658
Theta series of the canonical laminated lattice LAMBDA_27.
0
1, 0, 0, 0, 197142, 49152, 17938944, 13565952, 500022972, 549519360, 7119111168, 8746696704, 64795688552, 80374972416, 426695568384, 515432841216, 2207141692182, 2563069771776, 9461992962048
OFFSET
0,5
COMMENTS
Theta series is an element of the space of modular forms on Gamma_0(16) of weight 27/2 and dimension 28 over the integers.
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 179.
LINKS
J. H. Conway and N. J. A. Sloane, Laminated lattices, Annals of Math., 116 (1982), pp. 593-620. A revised version appears as Chapter 6 of "Sphere Packings, Lattices and Groups" by J. H. Conway and N. J. A. Sloane, Springer-Verlag, NY, 1988.
J. H. Conway and N. J. A. Sloane, The "shower" showing containments among the laminated lattices up to dimension 48 (Fig 3 from the Annals paper, also Fig. 6.1 in the Sphere packing book).
G. Nebe and N. J. A. Sloane, Home page for this lattice
EXAMPLE
G.f.: 1 + 197142*q^8 + 49152*q^10 + ...
PROG
(Magma)
L := Lattice("Lambda", 27);
T<q> := ThetaSeries(L, 14);
C := Coefficients(T);
[C[2*i-1] : i in [1..7]];
CROSSREFS
Cf. A005135.
Sequence in context: A305699 A035230 A099818 * A185519 A345659 A344942
KEYWORD
nonn,more
AUTHOR
Andy Huchala, Jun 21 2021
EXTENSIONS
a(16)-a(18) from Robin Visser, Sep 24 2023
STATUS
approved