login
A345659
Theta series of the canonical laminated lattice LAMBDA_28.
1
1, 0, 0, 0, 197736, 98304, 19104768, 27131904, 604372968, 1099235328, 9814781952, 17547657216, 100353367584, 162948022272, 731010140160, 1065852469248, 4124381085672, 5447639433216, 19044567785472, 23134041538560, 74959792721136, 84922989674496
OFFSET
0,5
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag. See pp. 159, 179.
LINKS
J. H. Conway and N. J. A. Sloane, Laminated lattices, Annals of Math., 116 (1982), pp. 593-620. A revised version appears as Chapter 6 of "Sphere Packings, Lattices and Groups" by J. H. Conway and N. J. A. Sloane, Springer-Verlag, NY, 1988.
J. H. Conway and N. J. A. Sloane, The "shower" showing containments among the laminated lattices up to dimension 48 (Fig 3 from the Annals paper, also Fig. 6.1 in the Sphere packing book).
G. Nebe and N. J. A. Sloane, Home page for this lattice
EXAMPLE
G.f.: 1 + 197736*q^8 + 98304*q^10 + ...
PROG
(Sage)
L = [1, 0, 0, 0, 197736, 98304, 19104768, 27131904, 604372968, 1099235328, 9814781952, 17547657216, 100353367584, 162948022272, 731010140160]
M = ModularForms(Gamma0(8), 14)
bases = [_.q_expansion(100) for _ in M.integral_basis()]
f = sum(x*y for (x, y) in zip(bases, L)); list(f)
CROSSREFS
Sequence in context: A099818 A345658 A185519 * A344942 A344943 A213817
KEYWORD
nonn
AUTHOR
Andy Huchala, Jun 21 2021
STATUS
approved