OFFSET
1,2
COMMENTS
For all n, a(n) >= 2*n - 1, where the equality holds if n is 1 or an odd prime.
a(n) equals the number of solutions to the congruence 2*x*y == 0 (mod n) for 1 <= x, y <= n. - Peter Bala, Jan 11 2024
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = Sum_{k = 1..2*n} (-1)^k * gcd(k,2*n).
a(n) is multiplicative with a(2^d) = (d+1)*2^d, and a(p^d) = (d+1)*p^d - d*p^(d-1) for an odd prime p, d >= 1.
From Peter Bala, Jan 11 2023: (Start)
a(n) = Sum_{d divides n} phi(2*d)*n/d, where phi(n) = A000010(n).
Dirichlet g.f.: 1/(1 - 1/2^s) * zeta(s-1)^2/zeta(s).
Define D(n) = Sum_{d divides n} a(d). Then
D(2*n+1) = (2*n + 1)*tau(2*n+1), where tau(n) = A000005(n), the number of divisors of n.
The sequence {(1/4)*( D(2*n) - D(n) ) : n >= 1} begins {1, 3, 6, 8, 10, 18, 14, 20, 27, 30, 22, 48, 26, 42, 60, 48, 34, 81, 38, 80, 84, 66, ...} and appears to be multiplicative. (End)
Sum_{k=1..n} a(k) ~ 4*n^2 * (log(n) - 1/2 + 2*gamma - log(2)/3 - 6*zeta'(2)/Pi^2) / Pi^2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 12 2024
EXAMPLE
a(6) = 20: the 20 solutions to the congruence 2*x*y == 0 (mod 6) for 1 <= x, y <= 6 are the pairs (x, y) = (k, 6) for 1 <= k <= 6, the pairs (6, k) for 1 <= k <= 5, the pairs (3, k) for 1 <= k <= 5 and the pairs (1, 3), (2, 3), (4, 3) and (5, 3). - Peter Bala, Jan 11 2024
MAPLE
seq(add((-1)^k*gcd(k, 2*n), k = 1..2*n), n = 1..70);
# alternative faster program for large n
with(numtheory): seq(add(gcd(2, d)*phi(d)*n/d, d in divisors(n)), n = 1..70); # Peter Bala, Jan 08 2024
MATHEMATICA
f[p_, e_] := (e + 1)*p^e - e*p^(e - 1); f[2, e_] := (e + 1)*2^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 20 2022 *)
Table[Sum[GCD[2*k, n], {k, 1, n}], {n, 1, 60}] (* or *)
Table[Sum[(-1)^k * GCD[k, 2*n], {k, 1, 2*n}], {n, 1, 60}] (* Vaclav Kotesovec, Jan 13 2024 *)
PROG
(PARI) { A344372(n) = my(f=factor(n)); prod(i=1, #f~, (f[i, 2]+1)*f[i, 1]^f[i, 2] - if(f[i, 1]>2, f[i, 2]*f[i, 1]^(f[i, 2]-1)) ); }
(PARI) a(n) = sum(k=1, 2*n, (-1)^k*gcd(k, 2*n)); \\ Michel Marcus, May 17 2021
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
Max Alekseyev, May 16 2021
EXTENSIONS
New name according to the formula by Peter Bala from Vaclav Kotesovec, Jan 13 2024
STATUS
approved