login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344375
Numbers n that can be written as the concatenation ab such that n mod (a*b) = a+b.
1
23, 29, 33, 39, 43, 49, 53, 59, 63, 69, 73, 79, 83, 89, 93, 99, 103, 109, 113, 119, 123, 129, 133, 139, 143, 149, 153, 159, 163, 169, 173, 179, 183, 189, 193, 199, 203, 209, 211, 213, 219, 223, 229, 233, 239, 243, 249, 253, 259, 263, 269, 273, 279, 283, 289, 293, 299, 303, 309, 311, 313, 319, 323
OFFSET
1,1
COMMENTS
Leading zeros are not allowed in b.
Includes all n >= 23 with n == 3 or 9 (mod 10), and all n >= 211 with n == 11 (mod 100).
Are there terms not of these forms?
Includes forms n == 142857 (mod 1000000) for n >= 2142857. - Michael S. Branicky, May 16 2021
LINKS
EXAMPLE
a(25) = 143 is a term because 143 mod (14*3) = 17 = 14+3.
MAPLE
filter:= proc(n) local k, a, b;
for k from 1 to ilog10(n) do
a:= n mod 10^k;
b:= (n-a)/10^k;
if a < 10^(k-1) then next fi;
if n mod (a*b) = a+b then return true fi
od;
false
end proc:
select(filter, [$10..1000]);
PROG
(Python)
def ok(n):
s = str(n)
for i in range(1, len(s)):
if s[i] == '0': continue
a, b = int(s[:i]), int(s[i:])
if n%(a*b) == a+b: return True
return False
print(list(filter(ok, range(1, 324)))) # Michael S. Branicky, May 16 2021
CROSSREFS
Cf. A268044.
Sequence in context: A244077 A277206 A214754 * A153631 A082943 A061754
KEYWORD
nonn,base
AUTHOR
J. M. Bergot and Robert Israel, May 16 2021
STATUS
approved