login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332794
a(n) = Sum_{d|n} (-1)^(d + 1) * d * phi(n/d).
3
1, -1, 5, -4, 9, -5, 13, -12, 21, -9, 21, -20, 25, -13, 45, -32, 33, -21, 37, -36, 65, -21, 45, -60, 65, -25, 81, -52, 57, -45, 61, -80, 105, -33, 117, -84, 73, -37, 125, -108, 81, -65, 85, -84, 189, -45, 93, -160, 133, -65, 165, -100, 105, -81, 189
OFFSET
1,3
LINKS
FORMULA
G.f.: Sum_{k>=1} phi(k) * x^k / (1 + x^k)^2.
Dirichlet g.f.: zeta(s-1)^2 * (1 - 2^(2 - s)) / zeta(s).
a(n) = Sum_{k=1..n} gcd(n, k) if n odd, Sum_{k=1..n} (-1)^(k + 1) * gcd(n, k) if n even.
From Amiram Eldar, Nov 04 2022: (Start)
Multiplicative with a(2^e) = -e*2^(e-1), and a(p^e) = (e*(p-1) + p)*p^(e-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3*log(2)/Pi^2 = 0.210691... . (End)
a(2*n) = - Sum_{k = 1..n} gcd(2*k, n) = - A344372(n); a(2*n+1) = A018804(2*n+1). - Peter Bala, Jan 11 2024
a(n) = Sum_{k = 1..n} (-1)^(1 + gcd(k, n)) * gcd(k, n) (follows from an identity of Cesàro. See, for example, Bordelles, Lemma 1). - Peter Bala, Jan 16 2024
MATHEMATICA
a[n_] := Sum[(-1)^(d + 1) d EulerPhi[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 55}]
nmax = 55; CoefficientList[Series[Sum[EulerPhi[k] x^k/(1 + x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
a[n_] := If[OddQ[n], Sum[GCD[n, k], {k, 1, n}], Sum[(-1)^(k + 1) GCD[n, k], {k, 1, n}]]; Table[a[n], {n, 1, 55}]
f[p_, e_] := (e*(p-1) + p)*p^(e-1); f[2, e_] := -e*2^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2022 *)
PROG
(PARI) a(n) = sumdiv(n, d, (-1)^(d+1)*d*eulerphi(n/d)); \\ Michel Marcus, Feb 24 2020
KEYWORD
sign,mult,easy
AUTHOR
Ilya Gutkovskiy, Feb 24 2020
STATUS
approved