login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106475
An alternating sum of greatest common divisors.
5
1, 0, 1, -4, 1, -8, 1, -16, -3, -16, 1, -36, 1, -24, -15, -48, 1, -48, 1, -68, -23, -40, 1, -112, -15, -48, -27, -100, 1, -120, 1, -128, -39, -64, -47, -180, 1, -72, -47, -208, 1, -176, 1, -164, -99, -88, 1, -304, -35, -160, -63, -196, 1, -216, -79, -304, -71, -112, 1, -420, 1, -120, -147, -320, -95, -288, 1, -260, -87
OFFSET
0,4
COMMENTS
With interpolated 0's, this is Sum_{k=0..n} gcd(n-k+1,k+1)*(-1)^k.
LINKS
FORMULA
a(n) = Sum_{k=0..2*n} gcd(2*n-k+1, k+1)*(-1)^k.
a(n) = 2(n+1) - A344371(2(n+1)) = 2(n+1) - A344372(n+1) = 2(n+1) + A199084(2(n+1)). - Max Alekseyev, May 16 2021
Sum_{k=1..n} a(k) ~ n^2 * (1 - (4/Pi^2)*(log(n) + 2*gamma - 1/2 - log(2)/3 - zeta'(2)/zeta(2))), where gamma is Euler's constant (A001620). - Amiram Eldar, Mar 30 2024
MATHEMATICA
Table[Sum[GCD[2n-k+1, k+1](-1)^k, {k, 0, 2n}], {n, 0, 100}] (* Giorgos Kalogeropoulos, Mar 31 2021 *)
PROG
(PARI) A106475(n) = sum(k=0, (2*n), gcd(1+n+n-k, k+1)*((-1)^k)); \\ Antti Karttunen, Mar 30 2021
CROSSREFS
Negated bisection of A344373.
Sequence in context: A305834 A295786 A080102 * A376302 A370614 A134829
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 03 2005
EXTENSIONS
More terms from Antti Karttunen, Mar 30 2021
STATUS
approved