login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106472
Expansion of g.f. (1 - x)^2*(1 + x) / (1 - 2*x)^2.
4
1, 3, 7, 17, 40, 92, 208, 464, 1024, 2240, 4864, 10496, 22528, 48128, 102400, 217088, 458752, 966656, 2031616, 4259840, 8912896, 18612224, 38797312, 80740352, 167772160, 348127232, 721420288, 1493172224, 3087007744, 6375342080, 13153337344, 27111981056
OFFSET
0,2
COMMENTS
Binomial transform of A029578(n+2). Row sums of number triangle A106471.
a(n) is the number of parts equal to 1 or 2 in all the compositions of n + 1. Example: a(2)=7 because in the compositions [3], [1,2], [2,1], and [1,1,1] we have 0 + 2 + 2 + 3 = 7 parts equal to 1 or 2. Equivalently, a(n) = Sum_{k>=0} k*A296559(n+1,k). - Emeric Deutsch, Dec 16 2017
FORMULA
a(0)=1, a(1)=3, and a(n) = (3*n + 8)*2^(n-3), for n>=2. [simplified by Ralf Stephan, Nov 16 2010]
a(n) = 4*a(n-1) - 4*a(n-2) for n > 3. - Colin Barker, Dec 16 2017
E.g.f.: (exp(2*x)*(4 + 3*x) + x)/4. - Stefano Spezia, May 14 2023
MAPLE
1, 3, seq((3*n+8)*2^(n-3), n = 2 .. 27); # Emeric Deutsch, Dec 16 2017
MATHEMATICA
Join[{1, 3}, LinearRecurrence[{4, -4}, {7, 17}, 30]] (* Jean-François Alcover, Dec 16 2017 *)
PROG
(PARI) x='x+O('x^99); Vec((1+x)*(1-x)^2/(1-2*x)^2) \\ Altug Alkan, Dec 16 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 03 2005
STATUS
approved