

A344346


Numbers k which have an odd number of trailing zeros in their binary reflected Gray code A014550(k).


1



3, 4, 11, 12, 15, 16, 19, 20, 27, 28, 35, 36, 43, 44, 47, 48, 51, 52, 59, 60, 63, 64, 67, 68, 75, 76, 79, 80, 83, 84, 91, 92, 99, 100, 107, 108, 111, 112, 115, 116, 123, 124, 131, 132, 139, 140, 143, 144, 147, 148, 155, 156, 163, 164, 171, 172, 175, 176, 179, 180
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Numbers k such that A050605(k1) is odd.
Numbers k such that A136480(k) is even.
The asymptotic density of this sequence is 1/3.


LINKS

Eric Weisstein's World of Mathematics, Gray Code.


FORMULA



EXAMPLE

3 is a term since its Gray code, 10, has 1 trailing zero, and 1 is odd.
15 is a term since its Gray code, 1000, has 3 trailing zeros, and 3 is odd.


MATHEMATICA

Select[Range[180], OddQ @ IntegerExponent[# * (# + 1)/2, 2] &]


CROSSREFS



KEYWORD

nonn,base,easy


AUTHOR



STATUS

approved



