login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343439
G.f.: 1 + 2^0*x/(1 + 2^1*x/(1 + 2^2*x/(1 + 2^3*x/(1 + 2^4*x/(1 + ...))))).
8
1, 1, -2, 12, -136, 2736, -99616, 6810816, -900563072, 234247256832, -120883821425152, 124271556482829312, -255006726559759042560, 1045529090595650037657600, -8569159507007490469146992640, 140431398588497630920722150113280, -4602217897540461023955069241211781120
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A(x) = 1 + x/A(2*x).
G.f.: 1/(Sum_{k>=0} A015083(k) * (-x)^k).
a(0) = a(1) = 1 and a(n) = -Sum_{k=1..n-1} 2^k*a(k)*a(n-k) for n > 1.
a(n) = (-2)^(n-1) * A015083(n-1) for n > 0.
PROG
(PARI) a(n) = my(A=1+O(x)); for(i=1, n, A=1+2^(n-i)*x/A); polcoef(A, n);
(PARI) a(n) = if(n<2, 1, -sum(k=1, n-1, 2^k*a(k)*a(n-k)));
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 15 2021
STATUS
approved