login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205886
E.g.f. satisfies: A(x) = x + arctanh(A(x))^2.
2
1, 2, 12, 136, 2160, 44048, 1098048, 32353536, 1100025600, 42390108672, 1825776471552, 86917798041600, 4531977405935616, 256853921275299840, 15722230877270212608, 1033667815031620239360, 72646598313232772038656, 5435067361538551649402880
OFFSET
1,2
COMMENTS
Radius of convergence is r = 0.22053155301... = A(r) - (1-A(r)^2)^2/4, where A(r) = tanh( (1-A(r)^2)/2 ) = 0.39770222711593...
FORMULA
E.g.f. satisfies:
(1) A(x) = Series_Reversion( x - arctanh(x)^2 ).
(2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) arctanh(x)^(2*n) / n!.
(3) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (arctanh(x)^(2*n)/x) / n! ).
(4) A'(x) = (1 - A(x)^2) / (1 - A(x)^2 - 2*arctanh(A(x))).
a(n) ~ ((1-s^2)/sqrt(2+4*s*arctanh(s))) * n^(n-1) / (exp(n) * r^(n-1/2)), where r and A(r) were described above, s = A(r) is the root of the equation 2*arctanh(s) = 1-s^2 and r = s-arctanh(s)^2. - Vaclav Kotesovec, Jan 12 2014
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 136*x^4/4! + 2160*x^5/5! + ...
Related expansions:
arctanh(A(x)) = x + 2*x^2/2! + 14*x^3/3! + 160*x^4/4! + 2544*x^5/5! + ...
arctanh(A(x))^2 = 2*x^2/2! + 12*x^3/3! + 136*x^4/4! + 2160*x^5/5! + ...
Series expressions:
A(x) = x + arctanh(x)^2 + d/dx arctanh(x)^4/2! + d^2/dx^2 arctanh(x)^6/3! + d^3/dx^3 arctanh(x)^8/4! + ...
log(A(x)/x) = arctanh(x)^2/x + d/dx (arctanh(x)^4/x)/2! + d^2/dx^2 (arctanh(x)^6/x)/3! + d^3/dx^3 (arctanh(x)^8/x)/4! + ...
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x - ArcTanh[x]^2, {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 12 2014 *)
PROG
(PARI) {a(n)=local(A=x+O(x^n)); for(i=0, n, A=x + atanh(A)^2); n!*polcoeff(A, n)}
(PARI) {a(n)=n!*polcoeff(serreverse(x-atanh(x+x*O(x^n))^2), n)}
for(n=1, 18, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, atanh(x+x*O(x^n))^(2*m)/m!)); n!*polcoeff(A, n)}
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, atanh(x+x*O(x^n))^(2*m)/x/m!)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
Cf. A201561.
Sequence in context: A180353 A208873 A201561 * A108996 A117513 A343439
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 03 2012
STATUS
approved