login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201561
E.g.f. satisfies: A(x) = x + tan( A(x) )^2 with A(0)=0.
1
1, 2, 12, 136, 2160, 43952, 1092672, 32102656, 1088252160, 41809041152, 1795201638912, 85196352787456, 4428299422310400, 250187205957220352, 15265712890413023232, 1000468694343925006336, 70089639485229413498880, 5227049493330884279140352, 413441163603081566484037632
OFFSET
1,2
FORMULA
E.g.f.: Series_Reversion( x - tan(x)^2 ).
E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) tan(x)^(2*n)/n!.
E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (tan(x)^(2*n)/x)/n! ).
a(n) ~ t*sqrt(((1+arccos(t))*t^2-1)/(6-4*t^2)) * n^(n-1) / (exp(n) * (1+arccos(t)-1/t^2)^n), where t = sqrt(((6*(9+sqrt(129)))^(1/3) - 2*6^(2/3)/(9+sqrt(129))^(1/3))/3) = 0.920710376904467468... is the root of the equation 4-4*t^2 = t^6. - Vaclav Kotesovec, Jan 12 2014
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 136*x^4/4! + 2160*x^5/5! +...
where A(x - tan(x)^2) = x.
Related expansions:
A(x) = x + tan(x)^2 + d/dx tan(x)^4/2! + d^2/dx^2 tan(x)^6/3! + d^3/dx^3 tan(x)^8/4! +...
log(A(x)/x) = tan(x)^2/x + d/dx (tan(x)^4/x)/2! + d^2/dx^2 (tan(x)^6/x)/3! + d^3/dx^3 (tan(x)^8/x)/4! +...
tan(A(x)) = x + 2*x^2/2! + 14*x^3/3! + 160*x^4/4! + 2536*x^5/5! + 51632*x^6/6! +...
tan(A(x))^2 = 2*x^2/2! + 12*x^3/3! + 136*x^4/4! + 2160*x^5/5! +...
tan(x) = x + 2*x^3/3! + 16*x^5/5! + 272*x^7/7! + 7936*x^9/9! +...
tan(x)^2 = 2*x^2/2! + 16*x^4/4! + 272*x^6/6! + 7936*x^8/8! +...
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x - Tan[x]^2, {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 12 2014 *)
PROG
(PARI) a(n, m=1)=n!*polcoeff(serreverse(x-tan(x+x*O(x^n))^2), n)
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, tan(x+x*O(x^n))^(2*m)/m!)); n!*polcoeff(A, n)}
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, tan(x+x*O(x^n))^(2*m)/x/m!)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Cf. A205886.
Sequence in context: A289998 A180353 A208873 * A205886 A108996 A117513
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 02 2011
STATUS
approved