Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Aug 16 2018 03:21:51
%S 1,2,12,136,2160,44048,1098048,32353536,1100025600,42390108672,
%T 1825776471552,86917798041600,4531977405935616,256853921275299840,
%U 15722230877270212608,1033667815031620239360,72646598313232772038656,5435067361538551649402880
%N E.g.f. satisfies: A(x) = x + arctanh(A(x))^2.
%C Radius of convergence is r = 0.22053155301... = A(r) - (1-A(r)^2)^2/4, where A(r) = tanh( (1-A(r)^2)/2 ) = 0.39770222711593...
%F E.g.f. satisfies:
%F (1) A(x) = Series_Reversion( x - arctanh(x)^2 ).
%F (2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) arctanh(x)^(2*n) / n!.
%F (3) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (arctanh(x)^(2*n)/x) / n! ).
%F (4) A'(x) = (1 - A(x)^2) / (1 - A(x)^2 - 2*arctanh(A(x))).
%F a(n) ~ ((1-s^2)/sqrt(2+4*s*arctanh(s))) * n^(n-1) / (exp(n) * r^(n-1/2)), where r and A(r) were described above, s = A(r) is the root of the equation 2*arctanh(s) = 1-s^2 and r = s-arctanh(s)^2. - _Vaclav Kotesovec_, Jan 12 2014
%e E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 136*x^4/4! + 2160*x^5/5! + ...
%e Related expansions:
%e arctanh(A(x)) = x + 2*x^2/2! + 14*x^3/3! + 160*x^4/4! + 2544*x^5/5! + ...
%e arctanh(A(x))^2 = 2*x^2/2! + 12*x^3/3! + 136*x^4/4! + 2160*x^5/5! + ...
%e Series expressions:
%e A(x) = x + arctanh(x)^2 + d/dx arctanh(x)^4/2! + d^2/dx^2 arctanh(x)^6/3! + d^3/dx^3 arctanh(x)^8/4! + ...
%e log(A(x)/x) = arctanh(x)^2/x + d/dx (arctanh(x)^4/x)/2! + d^2/dx^2 (arctanh(x)^6/x)/3! + d^3/dx^3 (arctanh(x)^8/x)/4! + ...
%t Rest[CoefficientList[InverseSeries[Series[x - ArcTanh[x]^2, {x, 0, 20}], x],x] * Range[0, 20]!] (* _Vaclav Kotesovec_, Jan 12 2014 *)
%o (PARI) {a(n)=local(A=x+O(x^n)); for(i=0, n, A=x + atanh(A)^2); n!*polcoeff(A, n)}
%o (PARI) {a(n)=n!*polcoeff(serreverse(x-atanh(x+x*O(x^n))^2), n)}
%o for(n=1,18,print1(a(n),", "))
%o (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
%o {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, atanh(x+x*O(x^n))^(2*m)/m!)); n!*polcoeff(A, n)}
%o (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
%o {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, atanh(x+x*O(x^n))^(2*m)/x/m!)+x*O(x^n))); n!*polcoeff(A, n)}
%o for(n=1, 20, print1(a(n), ", "))
%Y Cf. A201561.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Feb 03 2012