login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343350
Expansion of Product_{k>=1} 1 / (1 - x^k)^(5^(k-1)).
7
1, 1, 6, 31, 171, 921, 5031, 27281, 148101, 801901, 4336902, 23415777, 126254962, 679805112, 3655679442, 19634501447, 105334380517, 564471596667, 3021754455157, 16160029793032, 86339725851558, 460874548444683, 2457961986888773, 13097958657023523, 69740119667456018
OFFSET
0,3
FORMULA
a(n) ~ exp(2*sqrt(n/5) - 1/10 + c/5) * 5^(n - 1/4) / (2*sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} 1/(j * (5^(j-1) - 1)). - Vaclav Kotesovec, Apr 12 2021
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
d*5^(d-1), d=numtheory[divisors](j)), j=1..n)/n)
end:
seq(a(n), n=0..24); # Alois P. Heinz, Apr 12 2021
MATHEMATICA
nmax = 24; CoefficientList[Series[Product[1/(1 - x^k)^(5^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 5^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 24}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 12 2021
STATUS
approved