The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A343353 Expansion of Product_{k>=1} 1 / (1 - x^k)^(8^(k-1)). 7
 1, 1, 9, 73, 621, 5229, 44293, 374277, 3162447, 26694159, 225163687, 1897751079, 15983278059, 134519816427, 1131395821587, 9509592524371, 79880259426102, 670590654977718, 5626336598011078, 47179486350900358, 395410837699366686, 3312225325409475038, 27731588831310844302 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA a(n) ~ exp(sqrt(n/2) - 1/16 + c/8) * 2^(3*n - 7/4) / (sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} 1/(j * (8^(j-1) - 1)). - Vaclav Kotesovec, Apr 12 2021 MAPLE a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(       d*8^(d-1), d=numtheory[divisors](j)), j=1..n)/n)     end: seq(a(n), n=0..22);  # Alois P. Heinz, Apr 12 2021 MATHEMATICA nmax = 22; CoefficientList[Series[Product[1/(1 - x^k)^(8^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 8^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 22}] CROSSREFS Cf. A034691, A104460, A144072, A343349, A343350, A343351, A343352, A343354, A343355. Sequence in context: A023001 A277672 A015454 * A121246 A086226 A338677 Adjacent sequences:  A343350 A343351 A343352 * A343354 A343355 A343356 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Apr 12 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 03:58 EST 2022. Contains 350473 sequences. (Running on oeis4.)