login
A343349
Expansion of Product_{k>=1} 1 / (1 - x^k)^(4^(k-1)).
7
1, 1, 5, 21, 95, 415, 1851, 8155, 36030, 158510, 696502, 3052966, 13359230, 58346206, 254405630, 1107479694, 4813850699, 20894227355, 90567536543, 392066476815, 1695180397145, 7320927664713, 31581573600685, 136094434672509, 585876330191950, 2519701493092958
OFFSET
0,3
FORMULA
a(n) ~ exp(sqrt(n) - 1/8 + c/4) * 2^(2*n - 3/2) / (sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} 1/(j * (4^(j-1) - 1)). - Vaclav Kotesovec, Apr 12 2021
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
d*4^(d-1), d=numtheory[divisors](j)), j=1..n)/n)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Apr 12 2021
MATHEMATICA
nmax = 25; CoefficientList[Series[Product[1/(1 - x^k)^(4^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 4^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 12 2021
STATUS
approved