login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336945
a(n) = binomial(3*n,n)/(2*n + 1) - 2*binomial(3*(n - 1),n - 1)/(2*n - 1) for n > 0 with a(0) = 1.
0
1, -1, 1, 6, 31, 163, 882, 4896, 27759, 160149, 937365, 5553210, 33237828, 200696356, 1221105376, 7479222624, 46079243631, 285373035417, 1775569951995, 11093660204970, 69574265317095, 437832231422355, 2763889941603630, 17497374053053440, 111061430519553540, 706647507156148428, 4506221447451530172
OFFSET
0,4
FORMULA
a(n) = if(n == 0, 1, A001764(n) - 2*A001764(n-1)).
O.g.f.: (1 - 2*z)*2*sin(arcsin(sqrt(27*z)/2)/3)/sqrt(3*z). [This is due to Emeric Deutsch.]
D-finite with recurrence 2*n*(2*n+1)*a(n) +(-43*n^2+67*n-18)*a(n-1) +4*(31*n^2-130*n+117)*a(n-2) -12*(3*n-10)*(3*n-11)*a(n-3)=0. - R. J. Mathar, Mar 06 2022
MAPLE
# Recurrence:
a := proc(n) option remember; if n < 4 then return [1, -1, 1, 6][n+1] fi;
-((-108*n^2 + 756*n - 1320)*a(n - 3) + (124*n^2 - 520*n + 468)*a(n - 2) + (-43*n^2 + 67*n - 18)*a(n - 1)) / (4*n^2 + 2*n) end:
seq(a(n), n=0..26); # Peter Luschny, Aug 09 2020
alias(PS=ListTools:-PartialSums): A336945List := proc(m) local A, P, n;
A := [1, -1, 1]; P := [1, 1]; for n from 1 to m - 2 do P := PS(PS([op(P), P[-1]]));
A := [op(A), P[-1]] od; A end: A336945List(26); # Peter Luschny, Mar 26 2022
MATHEMATICA
a[n_] := Binomial[3*n, n]/(2*n + 1) - 2 * Binomial[3*(n - 1), n - 1]/(2*n - 1); Array[a, 27, 0] (* Amiram Eldar, Aug 08 2020 *)
PROG
(PARI) a(n) = if (n!=0, binomial(3*n, n)/(2*n + 1) - 2*binomial(3*(n - 1), n - 1)/(2*n - 1), 1); \\ Michel Marcus, Aug 09 2020
CROSSREFS
Cf. A001764.
Sequence in context: A003128 A058146 A015449 * A162475 A343350 A036729
KEYWORD
sign
AUTHOR
Petros Hadjicostas, Aug 08 2020
STATUS
approved