OFFSET
0,2
FORMULA
a(n) = n! * Sum_{k=0..n} (2 * (n-k+1))^k / k!.
a(0) = 1; a(n) = 3 * n * a(n-1) - Sum_{k=2..n} binomial(n,k) * (-2)^k * a(n-k).
a(n) ~ n! / ((1 + LambertW(2)) * (LambertW(2)/2)^(n+1)). - Vaclav Kotesovec, Aug 09 2021
MATHEMATICA
nmax = 19; CoefficientList[Series[1/(Exp[-2 x] - x), {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(2 (n - k + 1))^k/k!, {k, 0, n}], {n, 0, 19}]
a[0] = 1; a[n_] := a[n] = 3 n a[n - 1] - Sum[Binomial[n, k] (-2)^k a[n - k], {k, 2, n}]; Table[a[n], {n, 0, 19}]
PROG
(PARI) seq(n)={ Vec(serlaplace(1 / (exp(-2*x + O(x*x^n)) - x))) } \\ Andrew Howroyd, Aug 08 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 08 2020
STATUS
approved