login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342470
a(n) = Sum_{d|n} phi(d)^4.
4
1, 2, 17, 18, 257, 34, 1297, 274, 1313, 514, 10001, 306, 20737, 2594, 4369, 4370, 65537, 2626, 104977, 4626, 22049, 20002, 234257, 4658, 160257, 41474, 106289, 23346, 614657, 8738, 810001, 69906, 170017, 131074, 333329, 23634, 1679617, 209954, 352529, 70418
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{k=1..n} phi(n/gcd(k, n))^3.
G.f.: Sum_{k>=1} phi(k)^4 * x^k/(1 - x^k).
From Amiram Eldar, Nov 13 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p-1)^3*(p^(4*e)-1))/(p^3 + p^2 + p + 1).
Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(5)/5) * Product_{p prime} (1 - 4/p^2 + 6/p^3 - 4/p^4 + 1/p^5) = 0.05936545607... . (End)
MATHEMATICA
a[n_] := DivisorSum[n, EulerPhi[#]^4 &]; Array[a, 40] (* Amiram Eldar, Mar 13 2021 *)
PROG
(PARI) a(n) = sumdiv(n, d, eulerphi(d)^4);
(PARI) a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^3);
(PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)^4*x^k/(1-x^k)))
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Seiichi Manyama, Mar 13 2021
STATUS
approved