login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{d|n} phi(d)^4.
4

%I #25 Jan 20 2024 14:41:48

%S 1,2,17,18,257,34,1297,274,1313,514,10001,306,20737,2594,4369,4370,

%T 65537,2626,104977,4626,22049,20002,234257,4658,160257,41474,106289,

%U 23346,614657,8738,810001,69906,170017,131074,333329,23634,1679617,209954,352529,70418

%N a(n) = Sum_{d|n} phi(d)^4.

%H Seiichi Manyama, <a href="/A342470/b342470.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = Sum_{k=1..n} phi(n/gcd(k, n))^3.

%F G.f.: Sum_{k>=1} phi(k)^4 * x^k/(1 - x^k).

%F From _Amiram Eldar_, Nov 13 2022: (Start)

%F Multiplicative with a(p^e) = 1 + ((p-1)^3*(p^(4*e)-1))/(p^3 + p^2 + p + 1).

%F Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(5)/5) * Product_{p prime} (1 - 4/p^2 + 6/p^3 - 4/p^4 + 1/p^5) = 0.05936545607... . (End)

%t a[n_] := DivisorSum[n, EulerPhi[#]^4 &]; Array[a, 40] (* _Amiram Eldar_, Mar 13 2021 *)

%o (PARI) a(n) = sumdiv(n, d, eulerphi(d)^4);

%o (PARI) a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^3);

%o (PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)^4*x^k/(1-x^k)))

%Y Cf. A000010, A013663, A029939, A338997, A342471.

%K nonn,mult

%O 1,2

%A _Seiichi Manyama_, Mar 13 2021