login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A340316 Square array A(n,k), n>=1, k>=1, read by antidiagonals, where row n is the increasing list of all squarefree numbers with n primes. 7
2, 3, 6, 5, 10, 30, 7, 14, 42, 210, 11, 15, 66, 330, 2310, 13, 21, 70, 390, 2730, 30030, 17, 22, 78, 462, 3570, 39270, 510510, 19, 26, 102, 510, 3990, 43890, 570570, 9699690, 23, 33, 105, 546, 4290, 46410, 690690, 11741730, 223092870 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
This is a permutation of all squarefree numbers > 1.
LINKS
FORMULA
A(A072047(n), A340313(n)) = A005117(n) for n > 1.
EXAMPLE
First six rows and columns:
2 3 5 7 11 13
6 10 14 15 21 22
30 42 66 70 78 102
210 330 390 462 510 546
2310 2730 3570 3990 4290 4830
30030 39270 43890 46410 51870 53130
PROG
(Haskell)
a340316 n k = a340316_row n !! (k-1)
a340316_row n = [a005117_list !! k | k <- [0..], a072047_list !! k == n]
(Python)
from math import prod, isqrt
from sympy import prime, primerange, integer_nthroot, primepi
def A340316_T(n, k):
if n == 1: return prime(k)
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b+1, isqrt(x//c)+1), a+1)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b+1, integer_nthroot(x//c, m)[0]+1), a+1) for d in g(x, a2, b2, c*b2, m-1)))
def f(x): return int(k+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, n)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return bisection(f) # Chai Wah Wu, Aug 31 2024
CROSSREFS
Cf. A005117 (squarefree numbers), A072047 (number of prime factors), A340313 (indexing), A078840 (all natural numbers, not only squarefree).
Columns k=1..2: A002110, A306237.
Main diagonal gives A340467.
Cf. A358677.
Sequence in context: A344085 A019565 A309840 * A274608 A319680 A350337
KEYWORD
nonn,tabl,changed
AUTHOR
Peter Dolland, Jan 04 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 12 07:57 EDT 2024. Contains 375850 sequences. (Running on oeis4.)