OFFSET
1,1
COMMENTS
This is a permutation of all squarefree numbers > 1.
EXAMPLE
First six rows and columns:
2 3 5 7 11 13
6 10 14 15 21 22
30 42 66 70 78 102
210 330 390 462 510 546
2310 2730 3570 3990 4290 4830
30030 39270 43890 46410 51870 53130
PROG
(Haskell)
a340316 n k = a340316_row n !! (k-1)
a340316_row n = [a005117_list !! k | k <- [0..], a072047_list !! k == n]
(Python)
from math import prod, isqrt
from sympy import prime, primerange, integer_nthroot, primepi
def A340316_T(n, k):
if n == 1: return prime(k)
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b+1, isqrt(x//c)+1), a+1)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b+1, integer_nthroot(x//c, m)[0]+1), a+1) for d in g(x, a2, b2, c*b2, m-1)))
def f(x): return int(k+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, n)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return bisection(f) # Chai Wah Wu, Aug 31 2024
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Dolland, Jan 04 2021
STATUS
approved