login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340313
The n-th squarefree number is the a(n)-th squarefree number having its number of primes.
4
1, 1, 2, 3, 1, 4, 2, 5, 6, 3, 4, 7, 8, 5, 6, 9, 7, 10, 1, 11, 8, 9, 10, 12, 11, 12, 13, 2, 14, 13, 15, 14, 16, 15, 16, 17, 17, 18, 18, 19, 3, 19, 20, 4, 20, 21, 21, 22, 5, 22, 23, 23, 24, 25, 26, 24, 27, 28, 29, 30, 25, 26, 6, 27, 7, 31, 28, 29, 8, 32, 30, 9
OFFSET
1,3
COMMENTS
The sequence gives the column index of A005117(n) in the array A340316 and may be understood as a complementary addition to A072047 giving the row index.
FORMULA
a(n) = #{x|x <= n, A072047(x) = A072047(n)}.
EXAMPLE
{x|x <= 6, A072047(x) = A072047(6) = 1} = {2,3,4,6}, therefore a(6) = 4.
{x|x <= 28, A072047(x) = A072047(28) = 3} = {19,28}, therefore a(28) = 2.
MAPLE
with(numtheory):
b:= proc(n) option remember; local k; if n=1 then 1 else
for k from 1+b(n-1) while not issqrfree(k) do od; k fi
end:
p:= proc() 0 end:
a:= proc(n) option remember; local h; a(n-1);
h:= bigomega(b(n)); p(h):= p(h)+1;
end: a(0):=0:
seq(a(n), n=1..100); # Alois P. Heinz, Jan 06 2021
MATHEMATICA
b[n_] := b[n] = Module[{k}, If[n == 1, 1,
For[k = 1 + b[n - 1], !SquareFreeQ[k], k++]; k]];
p[_] = 0;
a[n_] := a[n] = Module[{h}, a[n - 1];
h = PrimeOmega[b[n]]; p[h] = p[h]+1];
a[0] = 0;
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 28 2022, after Alois P. Heinz *)
PROG
(Haskell)
a340313 n = a340313_list !! (n-1)
a340313_list = repetitions a072047_list
where
repetitions [] = []
repetitions (a:as) = 1 : h a as (repetitions as)
h _ [] _ = []
h b (c:cs) (r:rs) = (if c == b then succ else id) r : h b cs rs
(PARI) first(n) = {v = vector(5); n--; res = vector(n); t = 0; for(i = 2, oo, f = factor(i)[, 2]; if(vecmax(f) == 1, if(#f > #v, v = concat(v, vector(#f - #v)) ); t++; v[#f]++; res[t] = v[#f]; if(t >= n, return(concat(1, res)) ) ) ) } \\ David A. Corneth, Jan 07 2021
(Python)
from math import isqrt, prod
from sympy import primerange, integer_nthroot, mobius, primenu, primepi
def A340313(n):
if n == 1: return 1
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b+1, isqrt(x//c)+1), a+1)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b+1, integer_nthroot(x//c, m)[0]+1), a+1) for d in g(x, a2, b2, c*b2, m-1)))
def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
kmax = bisection(f)
return int(sum(primepi(kmax//prod(c[1] for c in a))-a[-1][0] for a in g(kmax, 0, 1, 1, m)) if (m:=primenu(kmax)) > 1 else primepi(kmax)) # Chai Wah Wu, Aug 31 2024
CROSSREFS
Cf. A001221, A001222, A005117 (squarefree numbers), A058933, A067003, A072047 (number of prime factors), A340316 (squarefree numbers array).
Sequence in context: A152201 A265579 A336879 * A120873 A125161 A331791
KEYWORD
nonn
AUTHOR
Peter Dolland, Jan 04 2021
STATUS
approved