login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A340243
a(n) = denominator((2*n-1)*zeta(2*n)/Pi^(2*n)).
0
2, 6, 30, 189, 1350, 10395, 58046625, 1403325, 21709437750, 2292899734125, 80596287646875, 640374140030625, 8779111824511153125, 443779279041223125, 20913098524817639765625, 195202717402382161174828125, 2015813566807172297008593750, 367589532770719654160390625
OFFSET
0,1
COMMENTS
For numerators a(n+1) see A046988.
FORMULA
a(n) = denominator((2*n-1)*2^(2*n-1)*Bernoulli(2*n)/(2*n)!). - Peter Luschny, Jan 12 2021
EXAMPLE
1/2, 1/6, 1/30, 1/189, 1/1350, 1/10395, 691/58046625, 2/1403325, 3617/21709437750, 43867/2292899734125, ...
MAPLE
a := n -> denom((2*n-1)*Zeta(2*n)/Pi^(2*n));
seq(a(n), n=0..17); # Peter Luschny, Jan 12 2021
MATHEMATICA
Denominator[Table[(2 n - 1)*Zeta[2 n]/Pi^(2 n), {n, 0, 16}]]
PROG
(PARI) a(n) = denominator((2*n-1)*2^(2*n-1)*bernfrac(2*n)/(2*n)!); \\ Michel Marcus, Jun 15 2022
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Artur Jasinski, Jan 01 2021
STATUS
approved