login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339507
Number of subsets of {1..n} whose sum is a decimal palindrome.
3
1, 2, 4, 8, 15, 24, 32, 41, 55, 79, 126, 220, 406, 778, 1524, 3057, 6310, 13211, 27500, 56246, 113003, 224220, 442106, 870323, 1715503, 3391092, 6726084, 13382357, 26686192, 53286329, 106469764, 212803832, 425434124, 850676115, 1701169724, 3402169203, 6804150711, 13608072837, 27215890383, 54431527170
OFFSET
0,2
LINKS
EXAMPLE
a(5) = 24 subsets: {}, {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 4, 5} and {1, 2, 3, 5}.
PROG
(Python)
from itertools import combinations
def a(n):
ans = 0
for r in range(n+1):
for s in combinations(range(1, n+1), r):
strss = str(sum(s))
ans += strss==strss[::-1]
return ans
print([a(n) for n in range(21)]) # Michael S. Branicky, Dec 07 2020
(Python)
from functools import lru_cache
from itertools import combinations
@lru_cache(maxsize=None)
def A339507(n):
pallist = set(i for i in range(1, n*(n+1)//2+1) if str(i) == str(i)[::-1])
return 1 if n == 0 else A339507(n-1) + sum(sum(d)+n in pallist for i in range(n) for d in combinations(range(1, n), i)) # Chai Wah Wu, Dec 08 2020
(Python)
from functools import lru_cache
def cond(s): ss = str(s); return ss == ss[::-1]
@lru_cache(maxsize=None)
def b(n, s):
if n == 0: return int(cond(s))
return b(n-1, s) + b(n-1, s+n)
a = lambda n: b(n, 0)
print([a(n) for n in range(100)]) # Michael S. Branicky, Oct 05 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Ilya Gutkovskiy, Dec 07 2020
EXTENSIONS
a(23)-a(36) from Michael S. Branicky, Dec 08 2020
a(37)-a(39) from Chai Wah Wu, Dec 11 2020
STATUS
approved