This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A305992 The sequence whose indicator function is I in conjectured formula A300997(n) = 2*n - Sum_{k=1..n} I(k), as long as the conjecture holds. 1
 1, 2, 4, 8, 15, 24, 32, 48, 62, 80, 101, 122, 147, 171, 202, 230, 267, 299, 339, 377, 418, 464, 509, 559, 611, 664, 719, 776, 836, 896, 960, 1024, 1098, 1167, 1240, 1315, 1392, 1471, 1553, 1642, 1724, 1816, 1906, 1999, 2094, 2190, 2290, 2392, 2499, 2599, 2713, 2818, 2937, 3048, 3166, 3288 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A300997(n) is believed to be equal to 2*n - Sum_{k=1..n} I(k), where I is the indicator function of some other sequence -- let it be this sequence. This sequence is finite if the conjecture is false. LINKS PROG (C) #include #include #define N 10000 void e(int *t, int *s) {   int T[N], i = 0; memset(T, 0, sizeof(T));   while (i < *s) {     int f = t[i] / 2;     T[i] += f + (t[i] % 2);     T[++ i] += f;   }   if (T[*s] != 0) { *s += 1; }   for (i = 0; i < *s; i ++) { t[i] = T[i]; } } int f(int n) {   int t[N], s = 1, i = 0; t[0] = n;   while (s != n) { i ++; e(t, &s); }   return 2 * n - i; } int main() {   int n, last = 1, current;   for (n = 1; n <= N; n ++) {     current = f(n);     switch (current - last) {     case 0: break;     case 1: printf("%d, ", n); fflush(stdout); break;     default: fprintf(stderr, "CONJECTURE IS FALSE"); return;     }     last = current;   }   printf("\n"); } CROSSREFS Cf. A300997. Sequence in context: A279858 A026474 A301629 * A082562 A159243 A325840 Adjacent sequences:  A305989 A305990 A305991 * A305993 A305994 A305995 KEYWORD nonn AUTHOR Luc Rousseau, Jun 16 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 11:06 EDT 2019. Contains 326057 sequences. (Running on oeis4.)