login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339504
Primes (p*(p+2)-2)/3 for p in A339503.
2
11, 47, 107, 587, 3467, 7499, 10799, 17327, 62207, 71147, 137387, 225227, 355007, 442367, 504299, 554699, 874799, 961067, 1175627, 1486847, 1512299, 1529387, 2617067, 2999999, 3525167, 3538187, 3629999, 4009007, 4148927, 4494527, 5116907, 5338667, 5467499, 8108207, 8227007, 10090667, 10156799
OFFSET
1,1
COMMENTS
Primes of the form (p*(p+2)-2)/3 where p and p+2 are primes.
Primes q such that sqrt(3*q+3)-1 and sqrt(3*q+3)+1 are prime.
LINKS
EXAMPLE
a(3)=107 is a term because 107=(17*19-2)/3 with 17, 17+2=19 and 107 all prime.
MAPLE
P:= {seq(ithprime(i), i=3..10000)}:
T:= P intersect map(`-`, P, 2):
select(isprime, map(p -> (p*(p+2)-2)/3, T));
MATHEMATICA
Select[Map[(# (# + 2) - 2)/3 &, Select[Prime@ Range[3, 750], PrimeQ[# + 2] &]], PrimeQ] (* Michael De Vlieger, Dec 07 2020 *)
CROSSREFS
Sequence in context: A107149 A158463 A143830 * A178572 A036489 A076306
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Dec 07 2020
STATUS
approved