OFFSET
1,1
COMMENTS
Primes of the form (p*(p+2)-2)/3 where p and p+2 are primes.
Primes q such that sqrt(3*q+3)-1 and sqrt(3*q+3)+1 are prime.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
a(3)=107 is a term because 107=(17*19-2)/3 with 17, 17+2=19 and 107 all prime.
MAPLE
P:= {seq(ithprime(i), i=3..10000)}:
T:= P intersect map(`-`, P, 2):
select(isprime, map(p -> (p*(p+2)-2)/3, T));
MATHEMATICA
Select[Map[(# (# + 2) - 2)/3 &, Select[Prime@ Range[3, 750], PrimeQ[# + 2] &]], PrimeQ] (* Michael De Vlieger, Dec 07 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Dec 07 2020
STATUS
approved