login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178572
Numbers with ordered partitions that have periods of length 5.
2
11, 47, 108, 194, 305, 441, 602, 788, 999, 1235, 1496, 1782, 2093, 2429, 2790, 3176, 3587, 4023, 4484, 4970, 5481, 6017, 6578, 7164, 7775, 8411, 9072, 9758, 10469, 11205, 11966, 12752, 13563, 14399, 15260, 16146, 17057, 17993, 18954, 19940, 20951
OFFSET
1,1
COMMENTS
From each ordered partition of the numbers (10+j) with 0<j<5 one removes the first part z(1) and adds 1 to the next z(1) parts to get a new partition until a period is reached.
The a(n) sequence begins with 11 and each member has 1 period; the b(n) = A022282(n) sequence begins with 12 and each member has 2 periods; the c(n) = A022283(n) sequence begins with 13 and each member has 2 periods; the d(n) = n*(25*n + 3)/2 sequence begins with 14 and each member has 1 period of length 5.
FORMULA
G.f. for a(n): (11 + 14*x)/(1-x)^3.
for b(n): (12 + 13*x)/(1-x)^3.
for c(n): (13 + 12*x)/(1-x)^3.
for d(n): (14 + 11*x)/(1-x)^3.
All sequences have the same recurrence
s(n+3) = 3*s(n+2) - 3*s(n+1) + s(n)
with s(0)=0, s(1) = 10 + j, s(2) = 45 + 2*j and 0<j<5.
s(n) = n*(25*n - 5 + 2*j)/2 and 0<j<5.
The general formula for numbers with periods of length k: a(k,j,n) = n*(k^2*n - k + 2*j)/2 with 0<j<k.
For j=1 and j=(k-1) the numbers have 1 period.
For 1<j<(k-1) the numbers have A092964(k-4,j-1) periods.
G.f.: (binomial(k,2)*(1+x) + j + (k-j)*x)/(1-x)^3.
EXAMPLE
For n=11 the period is [(4,3,2,1,1), (4,3,2,2), (4,3,3,1), (4,4,2,1), (5,3,2,1)].
For n=47 the period is [(9,8,7,6,6,4,3,2,1,1), (9,8,7,7,5,4,3,2,2), (9,8,8,6,5,4,3,3,1), (9,9,7,6,5,4,4,2,1), (10,8,7,6,5,5,3,2,1)].
For n=12 the 2 periods are [(4,3,2,2,1), (4,3,3,2), (4,4,3,1), (5,4,2,1), (5,3,2,1,1)] and [(4,3,3,1,1), (4,4,2,2), (5,3,3,1), (4,4,2,1,1), (5,3,2,2)].
For n=49 the 2 periods are [(9,8,7,7,6,4,3,2,2,1), (9,8,8,7,5,4,3,3,2), (9,9,8,6,5,4,4,3,1), (10,9,7,6,5,5,4,2,1), (10,8,7,6,6,5,3,2,1,1)] and [(9,8,8,6,6,4,3,3,1,1), (9,9,7,7,5,4,4,2,2),(10,8,8,6,5,5,3,3,1), (9,9,7,6,6,4,4,2,1,1), (10,8,7,7,5,5,3,2,2)].
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {11, 47, 108}, 50] (* Harvey P. Dale, Jan 14 2019 *)
Table[n*(25*n-3)/2, {n, 1, 50}] (* G. C. Greubel, Jan 30 2019 *)
PROG
(PARI) a(n)=n*(25*n-3)/2 \\ Charles R Greathouse IV, Jun 18 2017
(Magma) [n*(25*n-3)/2: n in [1..50]]; // G. C. Greubel, Jan 30 2019
(Sage) [n*(25*n-3)/2 for n in (1..50)] # G. C. Greubel, Jan 30 2019
(GAP) List([1..50], n -> n*(25*n-3)/2); # G. C. Greubel, Jan 30 2019
CROSSREFS
Sequence in context: A158463 A143830 A339504 * A036489 A076306 A219079
KEYWORD
nonn,easy
AUTHOR
Paul Weisenhorn, Dec 24 2010
STATUS
approved