login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338000
a(n) = 2^floor((2-n)/2)*Sum_{0 <= k <= n and A337966(n, k) < 0} A173018(n, k).
2
0, 0, 2, 4, 1, 1, 151, 604, 1135, 3652, 163921, 983020, 4781635, 26455096, 880441381, 7019296864, 62338135855, 485246558272, 14909515819441, 147911335595200, 2005509679122475, 19997668777814656, 618177354753297901, 7327199316870984064, 135962126415847073095
OFFSET
0,3
COMMENTS
The two sequences A337999 and A338000 represent the number of alternating permutations of order n as the difference between the greater and the smaller of the two absolute values (for n >= 2).
FORMULA
(A337999(n) - a(n))/2 = (-1)^floor(n/2)*A000111(n).
(-1)^floor(n/2)*(A337999(n) - a(n)) = A001250(n) for n >= 2.
EXAMPLE
Row 6 of A337967 is: 1, 57, -302, -302, 57, 1, 0. The sum of negative terms is 2*302 = 604. Thus a(6) = 604/4 = 151.
MAPLE
A338000 := n -> add(`if`(A337966(n, k)<0, A173018(n, k), 0), k=0..n)/2^floor((n-2)/2): seq(A338000(n), n=0..24);
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Oct 06 2020
STATUS
approved