The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A103161 GCD of reversed(2^n) and reversed(2^(n+1)), where reversed = A004086, the decimal representation of n read backwards. 1
 2, 4, 1, 1, 23, 1, 1, 1, 1, 4201, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 7, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 19, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 34, 1, 1, 1, 7, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 FORMULA a(n) = gcd(A004094(n), A004094(n+1)). EXAMPLE n=10: GCD of backward written powers-of-2 is GCD[4201,8402]=4201=a(10). MATHEMATICA rd[x_] :=FromDigits[Reverse[IntegerDigits[x]]] Table[GCD[rd[2^w], rd[2^(w+1)]], {w, 1, 100}] GCD[IntegerReverse[#[[1]]], IntegerReverse[#[[2]]]]&/@ Partition[ 2^Range[110], 2, 1] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 24 2017 *) PROG (PARI) rev(n) = subst(Polrev(digits(n)), 'x, 10); \\ These two functions from Charles R Greathouse IV, Oct 20 2014 A004094(n) = rev(2^n); A103161(n) = gcd(A004094(n), A004094(1+n)); \\ Antti Karttunen, Dec 07 2017 CROSSREFS Cf. A000079, A004094. Sequence in context: A236367 A197489 A297966 * A338000 A030420 A133902 Adjacent sequences:  A103158 A103159 A103160 * A103162 A103163 A103164 KEYWORD base,nonn AUTHOR Labos Elemer, Jan 25 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 11:58 EDT 2021. Contains 345098 sequences. (Running on oeis4.)